
THE COLLEGES OF OXFORD UNIVERSITY

MATHEMATICS, JOINT SCHOOLS AND COMPUTER SCIENCE

Sample Solutions for Specimen Test 1

1. A.

The two curves y = x2 and y = x+ 2 meet when

x2 − (x+ 2) = (x+ 1) (x− 2) = 0.

i.e. when x = −1 or x = 2. Within the region −1 6 x 6 2 then x2 6 x+ 2 (see graphs) and so the area between the
curves is Z 2
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The answer is (c).

B.

A function on the region 0 6 x 6 2 takes it minimum (and likewise maximum) either at a point x0 inside the region
0 < x < 2 in which case f 0 (x0) = 0 or at an endpoint x0 = 0 or 2 (see graph). If

f (x) = 2x3 − 9x2 + 12x+ 3

then
f 0 (x) = 6x2 − 18x+ 12 = 6 (x− 1) (x− 2) .

The graph has two turning points at x = 1 and x = 2. From our knowledge of the shape of cubics or by looking at
f 00 (x) we know that x = 1 is a maximum and x = 2 is a minimum. So the minimum is either at 2, or possibly at the
other endpoint x = 0 (even though this is not a turning point of f). Now

f (2) = 16− 36 + 24 + 3 = 7, f (0) = 3.

So the minimum value of f (x) for 0 6 x 6 2 is 3 and the answer is (b).
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The gradient of the line L, with equation 3x+ 4y = 50, is −3/4 and so a normal to the line has gradient 4/3. So the
normal N to the line through (3, 4) has equation

y − 4 = 4

3
(x− 3) .

This normal N meets L when

3x+ 16 +
16

3
(x− 3) = 50,

=⇒ 25x = 150,

=⇒ (x, y) = (6, 8) .

The vector from (3, 4) along N to (6, 8) on L is (3, 4) . Following this vector again to the mirror image gives (9, 12)
and we see the answer is (a).

D. Let
f (x) = x3 − 30x2 + 108x− 104.

By inspection we note that
f (2) = 8− 120 + 216− 104 = 0,

so that (x− 2) is a factor of f (x) . We see

f (x) = (x− 2)
¡
x2 − 28x+ 52

¢
= (x− 2) (x− 2) (x− 26) .

Hence x = 2 is a repeated root of the equation and the answer is (d).

E. It has been noted that 6× 7 = 42.

• This certainly isn’t a counter-example to the product of two odd numbers being odd, as this statement is true
and so there are no counter-examples.

• The product 42 is not a multiple of 4, but the numbers 6 and 7 are consecutive, so 6×7 = 42 is a counter-example
to (b).

• As 42 isn’t a multiple of 4 then 6× 7 = 42 can have no bearing on the truth or not of statement (c).

• Statement (d) is false, but to provide a counter-example we would need to show that all the possible factorisations
of some even integer included an odd number.

So the answer is (b).
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F. We have

2 cos2 x+ 5 sinx = 4,

=⇒ 2− 2 sin2 x+ 5 sinx = 4,

=⇒ 2 sin2 x− 5 sinx+ 2 = 0,

=⇒ (2 sinx− 1) (sinx− 2) = 0.

Hence sinx = 1/2, which occurs at π/6 and 5π/6 in the given range, or sinx = 2, which is true for no values of x.
Hence there are two solutions and the answer is (a).

G. Note
x2 + 3x+ 2 > 0 =⇒ (x+ 1) (x+ 2) > 0 =⇒ x > −1 or x < −2. (1)

Also
x2 + x < 2 =⇒ (x− 1) (x+ 2) < 0 =⇒ −2 < x < 1. (2)

The only x for which (1) and (2) agree are in the range −1 < x < 1. Hence the answer is (b).

H. We are given that
log10 2 = 0.3010 . . . and that 10

0.2 < 2.

So
log10 2

100 = 100 log10 2 = 30.10 . . .

Hence
2100 = 1030.10... = 100.10... × 1030.

This means that 2100 is 31 digits long, with its first digit being determined by 100.10.... As

100.10... < 100.2 < 2

that first digit is less than 2 and so must be a 1. This shows the answer is (c).

I. This question could be approached by simply working out the 11 coefficients. More systematically we know that
the coefficient of xk in (1 + x/2)

k is
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Note that
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=
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10!
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2k+1
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2 (k + 1)
.

From this we can see that ck+1/ck > 1, (i.e. that the ck are growing) if

10− k > 2k + 2 =⇒ 8 > 3k

which means k 6 2. So the ck grow up to c3 and then decrease thereafter – that is the answer is (b).

J. If x2y2 (x+ y) = 1 then it is clear that x 6= 0 and y 6= 0. This means that the curve never crosses the x- and y-axes.
This eliminates (a) and (b) as options. From x2y2 (x+ y) = 1 it follows that

x+ y =
1

x2y2
> 0

and so the curve lies entirely in the region x+ y > 0, which eliminates (d) as a possibility. Hence the correct answer
is (c).
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2. (i) Writing c for cos θ and s for sin θ we have

(x− 1)
¡
x2 − (c+ s)x+ cs

¢
=

£
x3 − (c+ s)x2 + csx

¤
−
£
x2 − (c+ s)x+ cs

¤
= x3 − (1 + c+ s)x2 + (cs+ c+ s)x− cs,

as required. Factorising the quadratic further we get

x2 − (c+ s)x+ cs = (x− c) (x− s) ,

and hence the three roots of the cubic are 1, c, s.

(ii) When θ = π/3 then the three roots are 1, c = 1
2 and s =

√
3
2 .

(iii) Two of the three roots can be equal when

• s = 1 which only occurs in the range 0 6 θ < 2π when θ = π/2;

• c = 1 in which case θ = 0;

• s = c in which case tan θ = 1 and θ = π/4 or 5π/4.

So the list of possibilities is θ = 0, π/4, π/2, 5π/4.

(iv) As s and c vary between −1 and 1, and the other root is 1, then the greatest difference possible is 2. However,
|s− c| cannot equal 2, so the difference is greatest when s = −1 or when c = −1. These cases occur at θ = 3π/2 and
θ = π respectively

When s = −1 then c = 0, and when c = −1 then s = 0. As the cubic is symmetric in s and c then the cubic is the
same in each case – or we might explicitly calculate it in each case to get

(x− 1) (x− 0) (x+ 1) = x3 − x.
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3. (i) As
f (x) = x2 − 2px+ 3

then f 0 (x) = 2x− 2p = 2 (x− p) = 0 at x = p. So the stationary point is in the range 0 < x < 1 only if 0 < p < 1,
and is otherwise outside that x-range.

(ii) The minimum value m (p) attained by f (x) in the range 0 6 x 6 1 will occur either at an endpoint (x = 0 or
x = 1) or at a stationary point in between. If p > 1 then we have seen there is no stationary point in between; as
f (0) = 3 and f (1) = 4− 2p < 3 then m (p) = 4− 2p.

(iii) If p 6 0 then again there is no stationary point in the range 0 < x < 1. However this time

f (1) = 4− 2p > 3 = f (0)

and so m (p) = 3.

(iv) If 0 < p < 1 then there is a stationary point at x = p, which is a minimum (because of the U-shape of the
parabola, or by calculating f 00 (p) = 2). Now

f (p) = p2 − 2p2 + 3 = 3− p2.

From our knowledge of the graph’s shape, or by checking that:

3− p2 < 3 = f (0) ;

3− p2 < 4− 2p = f (1) as 1− 2p+ p2 = (1− p)2 > 0;

then x = p is the minimum on the whole range 0 6 x 6 1 and m (p) = 3− p2 when 0 < p < 1.

(v)
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4.

(i) Taking AB as the base, which is of length c, and CR as the height, which is of length

AC sin(∠CAR) = b sinα,

we see the triangle has area
1

2
× base × height =

1

2
cb sinα.

By similar considerations, the area is also given by

Area(ABC) =
1

2
bc sinα =

1

2
ac sinβ =

1

2
ab sin γ.

Dividing these equations by abc/2, and then inverting, we obtain the sine rule

a

sinα
=

b

sinβ
=

c

sin γ
.

(ii) From the first part of the question we see that

Area(AQR) =
1

2
AQ ·AR sinα

=
AQ

c
× AR

b
×Area(ABC)

= cos2 α×Area(ABC)

since BAQ and RAC are right-angled triangles. Similarly

Area(BPR) = cos2 β ×Area(ABC);
Area(CQP ) = cos2 γ ×Area(ABC).

Hence

Area(PQR) = Area(ABC)−Area(AQR)−Area(BPR)−Area(CQP )
= (1− cos2 α− cos2 β − cos2 γ)×Area(ABC).

(iii) If
cos2 α+ cos2 β + cos2 γ = 1

in a triangle then the area of PQR is zero. This can only happen when two of P,Q and R coincide at what will be
the right-angle of the triangle – so the equality holds only if the triangle ABC is right-angled.
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5. (i) The only way to create longer songs, from previous ones, is by Rule II. xy is a song of length two (as it can be
made from Rule II as x-no notes-no notes-y) and by Rule III yx is also a song. With these two songs and using Rule
II again, we can produce two songs

xxyxyy and xyxyxy

of length six, and applying Rule III we also see that

yyxyxx and yxyxyx

are songs.

(ii) As was noted in (i) longer songs may only be produced from shorter ones using Rule II. Given any song s of length
m then the song xssy is also a song. By this means, k songs of length m create k new songs of length 2m + 2. The
only way to produce further songs of length 2m+ 2 is to swap the xs and ys in the newly made songs by Rule III. So
ys̃s̃x will also be a song of length 2m+ 2 where s̃ denotes the song s with all xs and ys swapped. As the new batch
of songs end in an x and the previous batch ended in a y then the second batch of length 2m+ 2 songs contains none
of the first batch. In total, then, we have 2k new songs of length 2m+ 2.

Each time this process of generating new songs produces twice as many songs of the next allowable length as for the
previous allowed length. As there is one song of the "noughth" allowed length there will be 2n of the nth allowed
length for n > 0. What is the nth allowed length? These allowed lengths follow the rule

length0 = 0

length1 = 2× 0 + 2 = 2
length2 = 2× 2 + 2 = 22 + 2
length3 = 2×

¡
22 + 2

¢
+ 2 = 23 + 22 + 2

...

lengthn = 2n + 2n−1 + · · ·+ 2.

This lengthn is a geometric sum with n terms, common ratio 2, and first term 2, and so we have

lengthn =
2 (2n − 1)
(2− 1) = 2n+1 − 2.

[For those with knowledge of mathematical induction then part (ii) could be attempted using this, for full marks, but
no presumption about such knowledge has been made.]

(iii) For any positive whole number n, it is possible to produce a song of greater length using Rules I, II, III, because
we can find a k such that 2k+1−2 > n. Set N = 2k+1−2. If this longer (length N) song ends in a y we may reduce its
length using Rule IV to make another song one note shorter. On the other hand, if the song of length N ends in an
x we can swap all the xs and ys by Rule III to produce a song, also of length N , which now ends in an y. Removing
the final y by Rule IV we again have produced a song of length N − 1.

Repeating this process, one note at a time, we eventually produce a song of length n, and so songs of all possible
lengths exist in the Martian later period.
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6. (i) The three hats are not all of the same colour. If Alice sees a black and white hat then she cannot conclude
anything about her own – but in the event she see two hats of the same colour she can conclude that her own must
be of the opposite colour. So Alice can see two black hats and herself wears a white one.

(ii) If Bob and Charlie have the same coloured hats then Alice can deduce what she is wearing. As she cannot then
Bob and Charlie must be wearing different hats. As Bob can see Charlie’s hat then he can deduce his own is of the
opposite colour.

(iii) If there were two black hats and one white one then, as in part (i), one of the three would be able to deduce that
they were wearing a white hat. Hence there must be one or no black hats.

(iv) If there were three white hats then on the second time of questioning all three would again be unsure about the
colour of their own hat. If there is one black hat then the two who can see it know that it is the only black hat and
that they are wearing white. Given the responses we know that Alice is wearing black, and that Bob and Charlie are
each wearing white.
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7. (i) The possible patterns are {k{k k{k{ {{kk kk{{
kkkk {{{{ {kk{ k{{k

The possible numbers of white counters are 0, 2, 4.

(ii) k{k{{k{kk{k{{k{k
Note that we started with an even number of whites. Each allowed move flips a row or column. If the number of
whites in the flipped row/column is i then it becomes 4 − i. In particular, if there was an odd (respectively even)
number of whites before there will be an odd (respectively even number) afterwards. As the remaining counters are
unchanged then each flip preserves the parity (oddness or evenness) of the total number of whites. As we started out
with an even number of whites, there will always remain an even number of whites – in particular, there can never
be just one white.

(An alternative proof is to note that any two-by-two subsquare is affected by each move either not at all or in the
same ways as moves in the two-by-two game, and must start with a pattern identical or complementary to that of the
previous part. So if it were possible to reach a four-by-four square with only one white then it would be possible to
reach a two-by-two square with only one white, and the previous part demonstrates that this is not possible.)

(iii) {k{k{k{k{k{k{k{k{k{k{k{k{
In the five-by-five case, the number of whites in each row or column changes from i to 5− i under each flip. Arguing
as in the previous part, the total number of whites changes from odd to even, or vice versa, with every move. Since
there is an even number of whites to start with and an odd number to end up with (an all-white grid with 25 whites),
there must be an odd number of moves.

It is fairly easy to see how to change the starting pattern to all white with five moves (flip rows 1, 3, and 5 and then
columns 2 and 4). Can it be done with fewer moves? We already know that the number of moves must be odd so
it suffices to show that 3 moves is not sufficient. The easiest way to see this is to note that one cannot touch all the
black counters in three moves – at most three black counters lie in a row or column and there are thirteen counters
that need turning in all.

(These sample solutions have been produced by Dr. Richard Earl, who is the Organising Secretary for admissions in
Mathematics, Statistics and Computer Science in Oxford. Any questions regarding the test, applying to Oxford to
read for these subjects, or comments on these solutions, would be welcome at earl@maths.ox.ac.uk)

9


