
SOLUTIONS FOR ADMISSIONS TEST IN

MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS

WEDNESDAY 7 NOVEMBER 2012

Mark Scheme:

Each part of Question 1 is worth four marks which are awarded solely for the correct answer.

Each of Questions 2-7 is worth 15 marks

QUESTION 1:

A. One can proceed by elimination. Point (1, 1) lies on line (a) and is clearly inside the given circle.(√
2, 0
)
lies on both lines (c) and (d) which is again inside the given circle. The answer is (b).

B. We can rewrite N as

N = 2k × 4m × 8n = 2k+2m+3n.

Now 2r is a square when r is even and is not a square when r is odd. So we need

k + 2m+ 3n = k + n+ 2 (m+ n)

to be even , which is equivalent to needing k + n to be even. The answer is (d).

C. Note that log3 (9
2) = 2 log3 9 = 4. By comparison with this number

(√
3
)3

= 3
√
3 > 4 as on squaring 27 > 16;

(
3 sin

π

3

)2
=

(
3
√
3

2

)2
=
27

4
> 4;

log2
(
log2

(
85
))

= log2 (5 log2 8) = log2 15 < log2 16 = 4.

The answer is (d).

D. If −1 < c < 0 then the horizontal and vertical sides of the shaded triangle have length 1 + c and
hence

A(c) =
1

2
(1 + c)2 .

This is a parabolic curve with minimum at (−1, 0) and so the answer is (a).

E. The curve is that of a quintic with a negative leading coefficient which eliminates (c). Two of
its roots are repeated which eliminates (b). Finally the smallest and middle of these roots are the
repeated ones which eliminates (a) which has its smallest and largest roots repeated. The answer
is (d).
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F. None of the integrals needs to be calculated. We need only note

∫ π/2

−π/2

cosx dx > 0 as cosx > 0 for − π
2
< x <

π

2
;

∫ 2π

π

sin x dx < 0 as sin x < 0 for π < x < 2π;

and ∫ π/8

0

dx

cos 3x
is defined and positive as cos 3x > cos

3π

8
> 0 for 0 < 3x <

3π

8
;

The product of two positive numbers and a negative one is negative. The answer is (b).

G. Using the second equation to eliminate x we see that

2 (k − y) + ky = 4 =⇒ (k − 2) y = (4− 2k) = −2 (k − 2) .

If k �= 2 then we can divide by k − 2 and we see y = −2. So positive solutions aren’t possible when
k �= 2. When k = 2 then the equations are

2x+ 2y = 4, x+ y = 2

which are both clearly satisfied by x = y = 1. The answer is (c).

H. A sketch of y = sin (sin t) in the range 0 < t � 2π looks like

1 2 3 4 5 6
t

-1.0

-0.5

0.0

0.5

1.0

y

To appreciate this we need to realise how the graph y = sin (sin t) relates to the graph y = sin t. The
value sin t is in the range −1 � sin t � 1 and for values in the range −1 � θ � 1 then sin θ is a value
which is smaller than but of the same sign as θ. Importantly sin is also odd.

So for 0 < x � π then ∫ x

0

sin(sin t) dt > 0.

Also, by the oddness of sin we have that

∫ 2π

π

sin(sin t) dt = −
∫ π

0

sin(sin t) dt.

So ∫ x

0

sin(sin t) dt

remains positive for π < x < 2π, the integral only becoming 0 when the signed area between π and
2π cancels out the area between 0 and π. The only root of the equation in the given range is x = 2π
and the answer is (b).
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I. If the radius of the circle is r then we have 2πr = 10 and r = 5/π. This distance r is also the
distance from the centre of the triangle to any of its vertices. So we have

A = 3× 1
2
r2 sin

(
2π

3

)
=
3
√
3

4
r2; P = 6× r sin

(π
3

)
= 3

√
3r.

Hence
A

P
=
3
√
3r2/4

3
√
3r

=
r

4
=
5

4π

and the answer is (a).

J. The area QPR is largest when Q and R are symmetrically placed about P , for if (say) PQ
were longer than PR then Q could be moved so as to gain more area than would be lost by the
corresponding move of R. This means that the angles QPO and RPO are both θ/2; the angle QOR
is 2θ as the angle subtended by QR at the centre O is twice that subtended at the circumference P .

Θ�2

Θ�2
2ΘP

O

Q

R

We then see that the area of PQR equals

2× 1
2
× 12 × sinQOP

︸ ︷︷ ︸
triangles

+
1

2
× 12 × 2θ

︸ ︷︷ ︸
sector

= sin (π − θ) + θ = sin θ + θ

and the answer is (b).
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2. (i) Note that

f 2g(x) = f(f(g(x))) = f(f(2x)) = f(2x+ 1) = 2x+ 2;

gf(x) = g(x+ 1) = 2(x+ 1) = 2x+ 2.

(ii) Using the identity f2g = gf we see that

gf2g = g(f2g) = g(gf) = g2f

and also that
gf2g = gf(fg) = f 2g(fg) = f 2gfg

and finally that
f2gfg = f 2 (gf) g = f 2

(
f2g
)
g = f 4g2.

These four, f 4g2, f2gfg, gf2g, g2f are the only sequences that lead to 4x+ 4.

(iii) Note that

fk(x) = x+ k;

gfk(x) = 2 (x+ k) = 2x+ 2k;

f jgfk(x) = (2x+ 2k) + j = 2x+ 2k + j;

gf jgfk(x) = 2 (2x+ 2k + j) = 4x+ 4k + 2j;

f igf jgfk(x) = (4x+ 4k + 2j) + i = 4x+ 4k + 2j + i.

(iv) We need to consider the ways we can have 4k+2j+ i = 4m where i, j, k � 0. Clearly k can take
the values 0 � k � m and then we need

2j + i = 4 (m− k) .

Then j can take values 0 � j � 2 (m− k) — that is 2m− 2k + 1 choices for j (given k). The choice
of j then determines i. So the number of possible combinations is

m∑

k=0

(2m− 2k + 1) = (2m+ 1)

(
m∑

k=0

1

)

− 2
(

m∑

k=0

k

)

= (2m+ 1) (m+ 1)− 2× 1
2
m(m+ 1)

= (m+ 1) (m+ 1)

= (m+ 1)2 .
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3. (i) For there to be two distinct turning points the derivative f ′(x) = 3x2+2ax+ b must have two
distinct real roots. This is determined by the discriminant

(2a)2 − 4× 3× b = 4
(
a2 − 3b

)
.

Thus y = f(x) has two distinct turning points if, and only if, a2 − 3b > 0.

(ii) The x-coordinates of the turning points are given by

x =
−2a±

√
4a2 − 12b

2× 3 = −a±
√
a2 − 3b
3

.

If we call these x1 and x2 with x1 < x2 then

x2 − x1 =
1

3

(
−a+

√
a2 − 3b+ a+

√
a2 − 3b

)

=
2

3

√
a2 − 3b.

(iii) The equation of the translated graph has a repeated root at x = 0 and another root at t (say),
where t is a positive real number. It is thus the case that

g(x) = x2(x− t) = x3 − tx2, and g′(x) = 3x2 − 2tx = x(3x− 2t).

There are then turning points at x = 0 and x = 2

3
t. Thus, using the result from (ii), we see that

2

3
t =

2

3

√
a2 − 3b

and hence t =
√
a2 − 3b, as required.

(iv) The area of the region R is given by

−
∫ t

0

g(x) dx = −
∫ t

0

x2(x− t) dx

= −
[
x4

4
− x

3

3
t

]t

0

=
t4

12

=
(a2 − 3b)2

12
,

which is rational when the coefficients a, b are rational.

(v) Yes, it is possible for R to be rational when a and b are both irrational. For example, let a = 2 4
√
2

and b =
√
2.
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4. (i) We need the gradient of the line segment joining (x, x2) to C = (0, 2). This is, for x �= 0, given
by

x2 − 2
x− 0 =

x2 − 2
x

.

(ii) Let the coordinates of B be (x1, x
2
1). Then the gradient of the parabola (and also of the circle)

at B is equal to 2x1. The tangent to these curves at B is perpendicular to the line segment joining
(x1, x

2
1) to (0, 2), so that

x21 − 2
x1

× 2x1 = −1.

Solving this, and taking the appropriate solution, gives x1 =
√

3

2
and x21 =

3

2
.

(iii) The square of the radius CB is

(√
3

2

)2
+

(
2− 3

2

)2
=
7

4
,

so the area of the circle is 7π
4
. The angle at the centre subtended by the minor arc AB is

2 cos−1




1

2√
7

4



 = 2 cos−1
(
1√
7

)
,

from which we see the sector’s area equals

1

2
r2θ =

1

2
× 7
4
× 2 cos−1

(
1√
7

)
=
7

4
cos−1

(
1√
7

)

(iv) Consider the equation
x2 − a
x

× 2x = −1.

This can be rearranged to give x2 = a− 1

2
. For two distinct real solutions we require a > 1

2
.

(v) If 0 < a � 1

2
then, from (iv), the circle is resting on the vertex of the parabola. In this case a = r.

On the other hand, if a > 1

2
then there are two distinct points points of contact, and we have

r2 = x2 + (x2 − a)2.

Now, using the fact that x2 = a− 1

2
, we obtain

r2 =

(
a− 1

2

)
+
1

4
=⇒ a = r2 +

1

4
.
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5. (i) From the recursive definition

P0 = F,

P1 = P0 LP0R = FLFR

P2 = P1 LP1R = FLFRLFLFRR.

(ii) Say there are fn commands F in Pn. As Pn+1 = Pn LPnR then fn+1 = 2fn. As f0 = 1 then
fn = 2

n.

(iii) Let ln denote the total number of commands in Pn. As Pn+1 = PnLPnR then

ln+1 = ln + 1 + ln + 1 = 2ln + 2.

If we set mn = ln + 2 (following the hint) then we see

mn+1 = ln+1 + 2 = 2ln + 4 = 2 (ln + 2) = 2mn.

As m0 = l0 + 2 = 3 then mn = 3× 2n and

ln = mn − 2 = 3× 2n − 2.

(iv) The robot again faces along the positive x-axis after each Pn because each Pn contains as many
Ls as it does Rs.

(v) P4 is sketched below:

2 4-2-4

4

2

-2

-4

(vi) After performing Pn the robot sits at (xn, yn) facing "east". Turning left it now faces "north"
so what otherwise would have led to a movement of (xn, yn) instead achieves (−yn, xn). So from the
recursion Pn+1 = PnLPnR we can see that

(xn+1, yn+1) = (xn, yn) + (−yn, xn) = (xn − yn, xn + yn) .

Note then that

(xn+2, yn+2) = (xn+1 − yn+1, xn+1 + yn+1) = (−2yn, 2xn) ;
(xn+4, yn+4) = (−2yn+2, 2xn+2) = (−4xn,−4yn) ;
(xn+8, yn+8) = (−4xn+4,−4yn+4) = (16xn, 16yn) .

Hence
(x8, y8) = (16, 0) and (x8k, y8k) =

(
16k, 0

)
.
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6.

(i) Alice’s hat is red, and the others are blue. It must be that Alice can see that neither of the others
has a red hat, so can deduce the colour of her own.

(ii) Alice must be able to see a red hat, or would be able to deduce the colour of her own hat.
Likewise, Bob must be able to see a red hat, or would be able to deduce the colour of his own hat
(given Alice’s answer). Hence Charlie’s hat is red.

(iii) Alice must be able to see two hats of the same colour in order to deduce the colour of her hat.
Bob knows this, and so deduces his hat is the same colour as Charlie’s. Hence Alice’s hat is blue,
and Bob’s and Charlie’s are red.

(iv) Alice must be able to see two hats of opposite colours, or else she would be able to deduce
her own hat colour. Bob knows this, so deduces his hat is a different colour from Charlie’s. Hence
Charlie’s hat is blue.

(v) If Bob and Charlie had different colour hats, Alice would know that she and Bob both had red
hats. Therefore Bob and Charlie both have red hats.

7. (i) If Amy plays 1, Brian plays 2 and wins; if Amy plays 2, Brian plays 1 and wins.

(ii) If Amy starts with 0, Brian can then play 1. Amy is now permitted to play 0 or 2. If Amy plays
0, Brian plays 2 or if Amy plays 2, Brian plays 0. Either way Brian wins after two rounds.

(iii) If Amy plays 0, Brian plays 2 to win; if Amy plays 2, Brian plays 0 to win.

(iv) Brian playing 2 would effectively return the game to the starting position having used up one
turn. Amy will continue by playing 1. If this leads to a win for Brian following the sequence
1, 2 1, then w, then Brian could have won more quickly by following 1 then w.

(v) After 1, 0 if Amy now plays 1 then Brian can win by playing 0. Hence Amy should play 2.

(vi) Following 1, 0 2, if Brian plays 0, then we’re effectively back in the starting position. So
Brian should play 1.

After 1, 0 2, 1 if Amy plays 1, Brian can win with 0. Hence Amy should play 2.

We’re now in a cycle, leading to 1, 0 2, 1 2, 1 2, 1 2, 1 giving a win for Amy.

8


